3 research outputs found

    Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures

    Get PDF
    The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, emphasized the urgent need for development of novel antivirals. Small-molecule chemical probes offer both to reveal aspects of virus replication and to serve as leads for antiviral therapeutic development. Here, we report on the identification of amiloride-based small molecules that potently inhibit OC43 and SARS-CoV-2 replication through targeting of conserved structured elements within the viral 5′-end. Nuclear magnetic resonance–based structural studies revealed specific amiloride interactions with stem loops containing bulge like structures and were predicted to be strongly bound by the lead amilorides in retrospective docking studies. Amilorides represent the first antiviral small molecules that target RNA structures within the 5′ untranslated regions and proximal region of the CoV genomes. These molecules will serve as chemical probes to further understand CoV RNA biology and can pave the way for the development of specific CoV RNA–targeted antivirals

    Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures

    Get PDF
    The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, emphasized the urgent need for development of novel antivirals. Small-molecule chemical probes offer both to reveal aspects of virus replication and to serve as leads for antiviral therapeutic development. Here, we report on the identification of amiloride-based small molecules that potently inhibit OC43 and SARS-CoV-2 replication through targeting of conserved structured elements within the viral 5′-end. Nuclear magnetic resonance–based structural studies revealed specific amiloride interactions with stem loops containing bulge like structures and were predicted to be strongly bound by the lead amilorides in retrospective docking studies. Amilorides represent the first antiviral small molecules that target RNA structures within the 5′ untranslated regions and proximal region of the CoV genomes. These molecules will serve as chemical probes to further understand CoV RNA biology and can pave the way for the development of specific CoV RNA–targeted antivirals

    Quantitative Structure Activity Relationship (QSAR) study predicts small molecule binding to RNA structure

    No full text
    The diversity of RNA structural elements and their documented role in human diseases make RNA an attractive therapeutic target. However, progress in drug discovery and development has been hindered by challenges in the determination of high-resolution RNA structures and a limited understanding of the parameters that drive RNA recognition by small molecules, including a lack of validated quantitative structure-activity relationships (QSAR). Herein, we developed QSAR models that quantitatively predict both thermodynamic and kinetic-based binding parameters of small molecules and the HIV-1 TAR model RNA system. A set of small molecules bearing diverse scaffolds was screened against the HIV-1-TAR construct using surface plasmon resonance, which provided the binding kinetics and affinities. The data was then analyzed using multiple linear regression (MLR) combined with feature selection to afford robust models for binding of diverse RNA-targeted scaffolds. The predictivity of the model was validated on untested small molecules. The QSAR models presented herein represent the first application of validated and predictive 2D-QSAR using multiple scaffolds against an RNA target. We expect the workflow to be generally applicable to other RNA structures, ultimately providing essential insight into the small molecule descriptors that drive selective binding interactions and, consequently, providing a platform that can exponentially increase the efficiency of ligand design and optimization without the need for high-resolution RNA structures
    corecore